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Abstract. A q u a "  statistical approach for a charged particle system is used to give a unified 
treatmen1 of the meta-nonmetal and liquid-vapour transitions in mercury. The equation of 
stale, which can be derived using the Green function method, is interpreted in terms of free 
charged partides and bound states, the energies of which are shifted due to the interaction with 
the medium. The numerical results suggest that the degree of ionization noticeably influences the 
liquid-vapour phase traosition in mercury. Theoretical results for the tiquid-vapour coexistence 
curve and the density dependence of the ionization energy are compared with experimental data 

Mercury has the lowest known critical temperature (1751 K) of any fluid metal. It 
is therefore not surprising that it has proven to be the most extensively investigated 
substance for the study of the interrelations of the metal-non-metal transition and the 
liquid-vapour phase transition [1,2]. Precise measurements of the electrical [3], optical 
141, and thermophysical [5 ]  properties including the exact location of the critical point 
(Tc = 1751 K, pc = 1673 bar, and ec = 5.8 g are available for fluid mercury 
over the whole liquid-vapour coexistence range. The data clearly demonstrate that radical 
changes in the electronic states occur from phase to phase. For example, far below the 
critical point, the liquid phase is highly conducting but the coexisting vapour phase is not. 
Nearer to the tiquid-vapour critical point, where the distinctions between the coexisting 
phases vanish, electrical conductivity, thermoelectric, Knight shift [6], and optical data of 
mercury show that non-metallic behaviour is present in both phases. The metal-nonmetal 
transition appears to occur at a density higher than that of the critical point and is generally 
located at 9 g ~ m - ~ .  

The existence of the elec!xonic transition makes the problem of describing the liquid- 
vapour transitions theoretically more difficult for mercury than for simple non-metallic fluids 
such as argon. Generally, it can be said that the two limiting cases of the dense liquid metal 
and the low-density vapour phase are reasonably well understood. However, the connection 
between these limits through the critical region of the phase diagram has been described only 
with highly simplified models [7,8]. A complete and satisfactory solution of the problem 
requires the simultaneous calculation of the electronic structure and the phase behaviour 
over wide ranges of pressure and temperature starting from realistic atomic properties of 
mercury. A unified treatment has to include both limiting cases, van der Waals and metallic 
bonding, and their interplay as a function of density. 
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There have been some attempts at a unified treatment of the electronic and 
thermodynamic phase transition in alkali metals [9,10], which are based upon a quantum 
statistical approach. Simple models such as an ideal mixture of quantum gases or a fermion 
liquid of quasiparticles are not sufficient to describe strongly correlated systems where effects 
such as the Mott transition from localized, bound electrons to itinerant, free electrons are 
of importance. A more fundamental approach has been given within a quantum statistical 
approach to charged particle system [l 11. Physical properties are related to thermodynamic 
Green functions, which are treated by perturbation theory. A representation by Feynman 
diagrams can be used to identify different many-particle effects within the perturbative series 
expansion. 

We will treat here the equation of state n = n(T ,  p) which relates the particle density n to 
the temperature T and the chemical potential p. As a thermodynamic potential, the pressure 
p ( T ,  p) = s,” dp’n(T, p’) and further thermodynamic quantities can be derived from that 
equation of state. Furthermore, stability against phase separation requires (ap/an)T 0. 
If this stability condition is violated, a Maxwell construction can be used to determine the 
phase transition region. 

On the other hand, we have 

where S-2 denotes the volume of the system and p stands for the momentum and possible 
intemal quantum numbers of the single-particle states (spin). f ( w )  is the (fermionic 
or bosonic) distribution function containing the temperature and the respective chemical 
potential. The singleparticle Green function G is related to the self-energy C ( p .  w )  for 
which a cluster decomposition I l l ]  can be given. In this way, the density n is split into 
contributions of single-particle states, bound states, and scattering states. Compared with 
the isolated few-body system, the single-particle and bound state properties are modified 
due to the interaction with the medium. In particular, the quasiparticle energies and bound 
state energies are shifted. 

This Green function approach has been applied [ I l l  to strongly coupled Coulomb 
systems such as hydrogen, the alkali elements, and the rare gases, but also to the electron- 
hole plasma in excited semiconductors. A systematic treatment has been developed, which is 
able to describe the low-density case, where we have a non-metallic gas or a partially ionized 
plasma, as well as the high-density case, where we have a degenerate liquid of quasiparticles. 
Extended work has been done to investigate the degree of ionization, possible plasma 
phase transitions, and optical and transport properties in these materials. In particular, 
highly sophisticated approximations have been used to find the critical data of Cs and other 
alkali vapours [9], which are in reasonable agreement with experimental values. A simpler 
approach to the phase transitions in the alkali fluids has been given recently [IO], dropping 
the modifications of the single-particle and bound state energies due to the interaction with 
the medium. 

Our microscopic approach starts from a charge neutral system consisting of electrons, 
density 2n, and mercury ions Hg*+, density n. Potentials are assumed between these 
constituents, which, in principle, can be deduced from a more elementary description of 
the system. The evaluation of the Green function for the electrons and the Hg2+ ions, 
respectively, has been performed by standard methods using a diagram representation [9,1 I].  
A cluster decomposition for the self-energy C ( p ,  o) allows us to account for the formation 
of bound states such as neutral Hg atoms and Hg+ ions. As already mentioned above, the 
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total density can be decomposed into a contribution of fret particles and the contributions 
of bound and scattering states. The contribution of scattering states is partially taken into 
account by intrcducing the quasiparticle picture; further contributions are neglected here. 
With respect to the variety of bound states, we resldct ourselves to the ground s t a b  of Hg+ 
and atomic Hg, neglecting excited states or further possible constituents such as Hg-, Hgz, 
or Hgl. The Green function approach allows to introduce formally new chemical potentials 
pa, {CY) = {Z+, +, 0, e), corresponding to the different components in the system, {Hg2+, 
Hg+, Hg, e-) (chemical picture). The relation 

= p+ + p =  = pL2+ +2pc = p (2) 

expresses the chemical equilibrium of the respective chemical reactions, Hg + Hg+ + e-, 
and Hg+ H 2 t  +e-. Now, the total density is decomposed into the partial densities ne of 
the respective constituents in this chemical picture n = n0+n++n2+, 2n = ne+n++2n0, 
where 

contains the in-medium energies En(p) .  

potential according to the relations 
For further evaluation, it is useful to introduce an 'ideal' part p.: of the chemical 

(4) 

where E: = -18.8 eV and E: = -29.2 eV are the energies to bind one (Hg+, E:) or 
two electrons (Hg, E,$ to the ion Hgz+, respectively. A: = 2nh2/ (m,k~T)  is the thermal 
wavelength, and FI,Z denotes the Fermi integral; spin multiplicities are given explicitly. 

Comparing (4) with (3), the excess parts 

ApU = pe - p; (5) 

are determined by the in-medium shifts of the energies Em(p) .  Before specifying Ape as 
a function of the partial densities nu due to the interactions with the various constituents, 
we give the solution of the equation of state n(T, p). 

We introduce effective binding energies which are density and temperature dependent 
according to Ap': 

E' = E: + A p t  - A@'+ - Ape (6) 

Utilizing the condition of chemical equilibrium (2)  and eliminating the ideal parts of the 
chemical potentials, the partial densities are given by 

Eo = + Ap' - Apz+ - 2Ap'. 

1 
nz+ = - 1 +@&-E') )- = n2te6(zfi~-Ea), (7) 

ne 2 ( 
From the condition of charge neutrality follows the relation n+ = ne - 2n2+. In this way, 
the partial densities n2+, n+, no are given in terms of fird or, solving the Fermi integral in 
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(4), by ne. The equation of state is then obtained in parametric form according to n(n', T )  
and, furthermore, we have 

T) = kBT ln(nZfh:) + A@2t + 2& + 2A,ue. (8) 

From the effective binding energies Et, li? (6) the ionization energies I +  = Et - Eo 
and 12+ = E'+ - Eo (with EZt = A$+) are obtained, which are necessary to seperate 
one or two electrons, respectively, from neutral Hg atoms. Due to the interaction parts 
of the chemical potentials A p ,  these ionization energies are functions of the density and 
temperature of the system. We will discuss these effective ionization energies in relation to 
the metal-nonmetal transition. 

With increasing density, the binding energies Eo and Et go to zero. As a result, the 
corresponding bound states vanish-they are dissolved in the continuum of scattering states 
(Mott effect). The corresponding partial density no longer contributes to the total density 
above the Mott density. However, the physical properties change smoothly at the Mott 
density as proven by the Levinson theorem [12]. The jump in the bound state conhibution 
is compensated by a corresponding jump in that of the scattering states [13,14]. These 
discontinuities are avoided using the Planck-Larkin partition function [ l l ]  

no - @ ( I " )  (e+'" - 1 + P I " )  (9) 

where @(x)  is the step function. 

as given by the partial densities in the medium 
The main problem is the determination of the interaction parts to the chemical potentials 

Ape = A p @  
B 

where A@ denotes the contribution of the species ,9 to the shift of species a. These 
interaction parts are derived in general form from microscopic treatments of the interparticle 
forces. A systematic quantum statistical approach can be given using the technique of 
Green functions [I 1,151. We give here only final expressions relevant for the system under 
consideration. 

For the long-range Coulomb interactions between charged particles, we utilize 
convenient interpolation formulae [I@. These Pad6 formulae are derived on the basis 
of higher-order approximations for the free energy of systems of point charges in the low- 
density limit, for the degenerate electron ga., and the swngly coupled ion system. To 
describe mercury ions with various degrees of ionization, we have used the generalizations 
according to [17]. 

It is well known that the long-range Coulomb interaction leads to a plasma phase 
transition from a phase of low degree of ionization to a phase of high ionization (Mott 
transition). However, in order to obtain relevant results for mercury, we have to take into 
account short-range interactions, which are of special importance for ions and neutrals. 
In principle, these short-range interactions can be derived from an analysis of the cluster 
expansion of the self-energy [15]. We will use here a semi-empirical approach to these 
short-range terms. 

The van der Waals interaction between neutrals (Apm) has been derived from the 
experimental second vinal coefficient using a Lennard-Jones potential. Comparing with 
measurements in the low-density region [5 ] ,  a parameter set E = 0.00652, U = 5.07 has 
been used [18] (we use Rydberg units in what follows, i.e. energies are given in Rydbergs, 
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1 Ryd = 13.6 eV, and distances in units of the Bohr radius, aB = 0.5291 x lo-]' m). 
The hard-core contributions to the chemical potentials were treated by a Carnahan-Starling 
formula [I91 

For the hard-core diameters we have adopted the values & = 5.1 in correspondence 
with the Lennard-Jones parameters, d+ = 4.5 according to the reduction of the atomic wave 
functions in Hg+, and dz+ = 2.04 from the measured compressibility in the liquid state: 
dap = (d, + dg)/2.  We mention that the results given below are not very sensitive with 
respect to the parameters d+,  dz+ because of the low concentration of the respective species. 

The electron-ion interaction is modified at short distances by the repulsion due to 
the Pauli principle with respect to the bound electrons. We have taken into account this 
contribution by the Wigner-Seitz method of an excluded volume, also determined by the 
hard-core radius. 

The beatment of the interaction between charged particles and neutrals is very important. 
A screened polarization potential has been used, leading to a vinal coefficient [I51 

The cut-off parameter ro = 1.4 was chosen in accordance with [ZO]. The screening length 
is given by 

where E is the dielectric function, and 01 = 34.4 is the polarizability of a mercury atom. 
Using these contributions to Ape, see also [171, we have found self-consistent solutions for 
the partial densities. The results for the relevant quantities are shown in figures 1-3. 
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Figure 1. Ionization energies of  mercury as a function of  he mass density ?J temperatures 
= 1260 K. Tz = 1750 K. Experimental data (solid circles) from [4], 
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Figure 2. lsotherms of the chemical potential of mercury as a function of the mass density. The 
region of instability (aB/an)r  .= 0 has to be replaced by a Maxwell construction. Tempcmms: 
TI = 1260 K; T2 = 1420 K 7j = 1580 K; 7i = 1740 K. 

0 2 4 6 8 1 0 1 2 1 4  
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Figure 3. The coexistence c w e  of mercury. A comparison of the present results (long-dashed 
line) with the experimental coexistence curve [3] (solid tine). and the coexistence curve of a 
pure atomic reference syslem without ionization (Lennard-Jones system shortdashed line). 

In figure 1, the ionization energy It(n, T) is shown for different temperatures as a 
function of the total density n. Starting with the atomic ionization energy of 10.44 eV in 
the low-density limit, it decreases with density due to the polarizability of the medium as 
described by the polarization potential. Passing through zero indicates the Mott density 
m, , (T)  where the bound state disappears, and a transition to the doubly ionized state 
occurs. We have neglected the two excited states of neutral Hg at energies that are hardly 
populated at the relatively low temperatures considered here. 

The density dependence of the calculated ionization energies can be contrasted with the 
experimental behaviour of the optical properties of fluid mercury [4,21,22]. Dense liquid 
mercury has a behaviour close to a metal showing Drude-like optical conductivity U @ )  

deriving from the free electrons. This gradually changes with density until by 9 g cmW3 
U @ )  is characteristic of materials with energy gaps. At even lower densities, down to 
about 3 g in the vapour, optical absorption edges are observed from which effective 
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optical gaps (solid points in figure 1) can be determined. For still lower densities this is no 
longer possible because here the experimentally observed absorption edge is dominated by 
transitions to the broadened singlet and triplet states of the neutral mercury atom [23,24]. 
The latter hampers the observation of the transitions to the continuum states. It should be 
emphasized here that the location of the Mott density as obtained from our Green function 
calculation, see figure 1, is sensitive with respect to the screening in the medium, and a 
more detailed txatment of dynamical screening may give a variation of the Mott density. 

The composition of mercury is mainly determined by the lowering of the ionization 
energy discussed above. Up to the Mott density, the composition is governed by the 
contribution of neutral atoms. The contribution of the singly charged mercury ions is small, 
and the partial density of Hg2+ is negligible. Therefore, mercury vapour can be considered 
as a non-metallic dielectric system up to the Mott density. The reason for this behaviour is 
found from the ionization energy the value of which is large compared with the temperature. 
Above the Moa density, mercury becomes fully ionized. 

Figure 2 shows the equation of state n(p.  p )  for different temperatures as a function of 
density. The instability region (appn),  c 0 should be replaced by a Maxwell construction. 
It can be shown that the lowering of the ionization energy with increasing density destabilizes 
the system such that the liquid-vapour phase transition, which is already present in the 
atomic system, is shifted to higher temperatures. Considering different isotherms, the critical 
parameters T, = 1740 K and ec = 6.2 g c n r 3  are found, which are in good agreement with 
the experimental values. 

The coexistence curve is obtained from the Maxwell construction and shown in figure 3. 
The theoretical values are in reasonable agreement with the experimental results. However, 
the Mott density occurs at higher densities compared with the experimental data. This may 
be the reason for the deviations of the theoretical coexistence curve from the experimental 
one which are still to be seen. To demonstrate the importance of the ionization equilibrium 
to the form of the coexistence curve of mercury, we compare also with that of pure atomic 
mercury kennard-Jones system) without the possiblity of ionization (short-dashed line). 
Agreement with the experimental values can only be stated in the limit of the dilute vapour 
where mercury is atomic. The deviations already become much more pronounced above 
1 g and, especially, the critical temperature is too low (- 1330 K). Thus, the effect 
of the ionization equilibrium is a considerable increase of the mitical temperature up to 
experimental values. 

It should be pointed out that we have tried to give a first quantum statistical approach 
to mercury vapour near the phase transition region. We are interested in relevant interaction 
effects that govern the composition and the thermodynamic properties of this strongly 
coupled system. Of course, a microscopic approach to the short-range interaction terms 
is possible, avoiding the input of atomic parameters as used here. A more fundamental 
approach should s t a t  with the atomic orbitals of mercury for the derivation of those 
parameters. Such a general approach was derived in [25] for hydrogen and helium. 

Furthermore, it is obvious that a detailed comparison between theory and experiment 
requires an extensive investigation of further many-particle effects in dense mercury vapour 
such as, for instance, dynamical screening, Pauli blocking, and wave function overlap, and 
the account of the contributions of scattering states. 
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